Tuesday, 17 October 2017

Moving Gjennomsnittet Dsp


Avgrens DSP-selskaper og produkter: Klikk på hvilken som helst leverandør for å se en liste over DSP-relaterte produkter. FMC645 er et digitalt signalprosessor FMC-datterkort basert på Texas Instruments TMS320C6455-enheten. FMC645-datterkortet er mekanisk og elektrisk kompatibelt med FMC-standarden (ANSIVITA 57.1). Kortet har en høyt pin-tallkontakt og kan brukes i et ledningskjølt miljø. Kortet er utstyrt med strømforsyning og temperaturovervåking og tilbyr flere nedstartsmoduser for å slå av ubrukte funksjoner og perifere grensesnitt. Flere Gigabit-differensialpar fra FMC-kontakten brukes til å implementere et PCIe - og Serial Rapid IO-grensesnitt mellom FMC og bæreren. Mange andre digitale IO-grensesnitt er også tilgjengelig for FMC-operatøren. På grunn av bruk av nivåoversettere mellom DSP og FMC-kontakten kan FMC645 fullt ut brukes på alle VITA 57.1-kompatible operatører. En 512 MB DDR2 SDRAM innebygd bank kobler direkte til DSP, og gir dermed FMC645 de nødvendige minnesressursene for krevende signalbehandlingsprogrammer. () FM577The FM577 er et billig, lavt strømforbruk på 65nm FPGA-basert kort tilgjengelig i PMC-formfaktoren () FM485Dual FPGA Virtex-5 og Virtex-4 med 128 MB DDR2 og 16 MB QDRII SDRAM lokalt minne PMC-X og XMC for høybåndsbredde analog konvertering DSP-behandling () FM486Dual FPGA Virtex-5 Virtex-4 med opptil 512 MB DDR3 og 8 MB QDRII SDRAM Lokalt minne PMC-X og XMC for høybåndsbredde analog konvertering DSP-behandling () FM482Dual Xilinx Virtex-4 FPGA signalprosessor PMCXMC () En DSP DAC for høyhastighets analog signalregenerering og digital signalbehandling () En DSP ADC for høyhastighets analog signalinnsamling og digital signalbehandling () CPCI381A 3U CompactPCI-kort gir en kraftig plattform for høyhastighets analog signalinnsamling og digital signalbehandling () TMS320C32 flytpunkt DSP, kjører ved 60 MHz, leverer 30 MIPS To samtidige sampling 12-bits AD-kanaler Programmerbar samplingsfrekvens på opptil 7,5 Msamplessec Gir en kraftig plattform for høyhastighets analog signal Fangst og digital signalbehandling () To analoge inngangskanaler kan samtidig samplere på (maksimalt) 7,5 MSps samplingsfrekvens Lokal programvare tillater forbedret og brukerspesifikk signalbehandling Gain - og offsetfeil kompenseres av DSP CPCI383A 3U CompactPCI-kortet som gir en kraftig plattform for høyhastighets analog signal (re) generering og digital signalbehandling () TMS320C32 flytpunkt DSP, kjører ved 60 MHz, leverer 30 MIPS Tre høyhastighets, 16-biters DA-kanaler Analog utgangshastighet er programvareprogrammerbar opptil 7,5 Msamplessec Analog og digital IO () Analog og digital IO () Analog og digital IO () M393 8-kanals differensialinngang ADC M-modul (med DMA, enkeltkanal) Gir en kraftig plattform for høyhastighets analog signal (re) generasjon og digital signalbehandling er veldig godt egnet til bruk i applikasjoner der autonome signalkonvertering er et problem, samt i standard mellomprogrammer () Aktiverte kanaler skannes med maksimal hastighet og Konverteringsresultater lagres i delt minne. En lokal DSP utfører all funksjonalitet, og bruker-spesifikke funksjoner kan legges til for tilpasset operasjon. M392 16-kanals Common-Mode Input ADC M-modulen er meget velegnet til bruk i applikasjoner der autonome signalkonvertering er et problem, samt i standard mellomprogrammer () Aktiverte kanaler skannes med maksimal hastighet og Konverteringsresultater lagres i delt minne En lokal DSP utfører alle funksjoner som kalibrering. Brukerspesifikke funksjoner kan legges til for tilpasset drift. TMS320C32 flytpunkt DSP, som kjører ved 60 MHz, gir 30 MIPS () Optimalisert for lave kostnader, og utvider rekkevidden til FPGAs ytterligere i kostnadssensitive applikasjoner med høy volum () Kundedefinert funksjonssett, bransjeledende ytelse og lavt kraftforbruk. Stor økt tetthet og flere funksjoner, alt til betydelig lavere kostnader. 150 innebygde 18 x 18-multipliserere Nios II, StratixInternal klokkefrekvens på 500 MHz og typisk ytelse 250 MHz () Lever i gjennomsnitt 50 raskere ytelse og mer enn 2x logikken kapasitet enn første generasjons Stratix FPGAer Leverer 50x høyere multiplikatorbåndbredde enn enkle-chip, frittstående digitale signalprosessorer DSP-blokkene har fleksibilitet og ytelse til å implementere raske, aritmetiske-intensive applikasjoner som bildebehandling, trådløs kommunikasjon, militær, kringkasting og medisinske 28-nm Stratix V FPGAs Med DSP-blokken med variabel presisjon, kan Alteras Stratix V FPGA støtte 8211 på en blokk-for-blokk basis 8211 v arious presisjoner fra 9-bit x 9-bit opp til enkelt-presisjon flytpunkt (mantissa multiplikasjon) i en enkelt DSP blokk () Dette frigjør deg fra FPGA arkitektur begrensninger, slik at du kan bruke optimal presisjon i hvert trinn av DSP databane Økt systemytelse, redusert strømforbruk og reduserte arkitektoniske begrensninger Hver variabel-presisjonsblokk kan konfigureres ved kompileringstid for å implementere: Dual 18-bit x 18-bit multiplikatorer i summen eller uavhengige moduser Opptil 680K logiske elementer (LEs ) 2X større enn Alteras Stratix III-familien Altera 40-nm-enheter oppfyller de ulike, avanserte applikasjonsbehovene på et stort antall markeder som trådløs og wireline-kommunikasjon, militær, kringkasting og ASIC-prototyping. Stratix DSP Development KitA utviklingssett for Texas Instruments DSP-utviklingsplattformer for å muliggjøre utvikling av FPGA-prosessorer () Fungerer et utviklingsbord med Stratix EP1S80-enheten, to 12-bits, 125 MHz-omformere, to 14-biters, 165 MHz-DA-omformere, 64 Mbits Flash-minne, 2 Mbytes synkron SRAM og en tilkobling til Analog Devices AD-evalueringskort. Inkluderer et dørplattformsdatterkort som plugger direkte inn i Texas Instruments høyytelses TMS320C6000 og kostnads - effektive TMS320C5000 DSP-utviklingsplattformer Gir versjonsevalueringsversjoner av nøkkel DSP-intellektuell eiendom, inkludert en FIR-kompilator, uendelig impulsrespons (IIR) - filterkompiler, samt korrelator-, FFT-, Viterbi - og Reed Solomon-kjerner Stratix II FPGAExtensive IP-porteføljestøtte () DSP-blokker gir høyere ytelse med multiplikator, rørledning og akkumulerer noe som mangler her. Tilbyr mer enn 142 GMACS av DSP-gjennomstrømning ved hjelp av DSP-blokker. Gir 4x DSP-blokkbåndbredden til Stratix-enheter 8211 opptil 370 MHz. Et DSP-utviklingsverktøy med utvidet tilgang til Altera IP og støtte for MathWorks MATLAB 7SimuLink 6-programvaren () Støtter Atratix II og Cyclone II-enhetens familier Støtter Alteras DSP Meg aCore IP-portefølje Inkluderer en fargeplasskonverter UP-kjerne og en kantdeteksjonsreferansesignal med et todimensjonalt filter for video - og bildebehandlingsdesign Høyhastighets IO-signalering og grensesnitt () Støtter de nyeste eksterne minnesgrensesnittene i dedikerte kretser, inkludert DDR2 SDRAM , RLDRAM II og QDRII SRAM-enheter Bringer programmerbar logikkfunksjonalitet og fordeler til nye applikasjoner som krever designsikkerhet TriMatrix Memory Stratix EP1S80A DSP-utviklingsbrett () Inkludert med Stratix Professional Edition DSP-utviklingssett To 12-bits, 125 MHz-omformere To 14 - bit, 165 MHz DA-omformere Linker MATLABSimulink-verktøy med Altera Quartus II-designprogramvaren () Støtter fullt ut Altera DSP IP Støtter Stratix, Stratix II, Cyclone og Cyclone II-familier. Muliggjør rask prototyping med Alterathird-party DSP-utviklingsbrett Stratix II Dev . KitDSP utviklingsbrett, Stratix II Edition med en Statix ​​II-enhet () Gir en rekke analoge og digitale IOS 16 MB SDR SDRAM 16 MB Flash 1 MB SRAM 32 MB kompakte flashminner MATLABSimulink evalueringsprogramvare DSP BuilderLinks MATLABSimulink verktøy med Altera Quartus II design programvare () Støtter fullt ut Altera DSP IP Støtter Stratix, Stratix II, Cyclone og Cyclone II-familier. Muliggjør rask prototyping med AlterDird-party DSP-utviklingsbrett. Cyclone II FPGAIndustrys laveste programmable logikkplattform for DSP-implementering () Tilbyr opptil 68 416 logger tetthet og 1,1 Mb embedded memory Gir innebygde konfigurerbare multiplikatorer for billige DSP-applikasjoner Gir opptil 150 18-bit x 18-bit multiplikatorer som opererer med opptil 250 MHz En mikrofon med en mikrofon optimalisert for digital signalbehandling og annen høyhastighetshastighet numeriske behandlingsprogrammer () EZ-KIT Lite evalueringssettet er tilgjengelig for ADIs ADSP-21160x SHARC-familie av DSPs, så vel som ADSP-2189 M-Series () Det gir en kostnadseffektiv metode for første evaluering av begge disse DSP-arkitekturene. ADSP-21160M EZ-Kit Lite-kit-grensesnittene til ADIs VisualDSP-verktøyet ADSP-2189M EZ-KIT Lite-settet består av en frittstående DSP-kort med kodegenererings - og feilsøkingsprogramvare og muliggjør evaluering av ADSP-218x DSP-familien, samt VisualDSP-utviklingsmiljøet, som inkluderer en C-kompilator, assembler og linker. En 16-bits fastpunkts-DSP optimalisert for telekommunikasjon og andre høyhastighets numeriske behandlingsprogrammer () Fungerer på 160 MHz og er i stand til 160 MIPS DSP er kodekompatibel med ADSP-21xx-familien med økt ytelse On-chip-systemgrensesnitt støtter T1, E1 og H.100-baserte høytthets telefoni systemer En høy ytelse DSP i stand til å levere MCU kontroll funksjonalitet i en enkelt instruksjon satt til 300 MHz vedvarende ytelse () En innebygd DSP-prosessor som integrerer to identiske Blackfin DSP-kjerner () Aktiverer symmetrisk multiprosessering (SMP) Ytelse på 750 MHz og 1500 MMACs (millioner flere akkumulere operasjoner) per kjerne Hver kjerne inneholder to multiplikator-akkumulatorer (MACs), to 40-biters ALUer, fire 8-bits video-ALUer og en enkelt fateskifter En Internett Gateway Prosessor DSP-chip med en arkitektur som kan utføre flere operasjoner parallelt () Et sett med tre DSP-prosessorer i TigerSHARC-familien () En TigerSHARC DSP-prosessor () Statisk sup erscalar-arkitektur som støtter 1, 9, 16 og 32-biters fastpunktbehandling Høy ytelse, 600 MHz, 1,67 nsek instruksjonshastighet DSP-kjerne 24 Mbits on-chip innebygd DRAM internt organisert i seks banker med brukerdefinert partisjonering A 16 - bit fastpunktspunkt DSP optimalisert for telekommunikasjon og andre høyhastighets numeriske behandlingsapplikasjoner () En familie på seks mikroprosessorer med én chip, optimalisert for digitale signalbehandlingsprogrammer () En 100 MHz SIMD 32-bit fastpunkt og flytpunkts DSP () 1 Mbit av dobbeltported, onchip SRAM kan være brukerkonfigurert IEEE 784-884 flytende punktkompatibel 14 DMA-kontrollkanaler støtter dataoverføring mellom internminne og eksternt minne, eksterne eksterne enheter, vertsprosessor og flere porter SHARC174 Prosessorer, I sin tredje generasjon kombinerer en høy ytelse med fast og flytende punktkjerne med sofistikerte minne - og IO-prosess-delsystemer. () En lav-effekt, single Multipla-Akkumulate (MAC), 16-bits fastpunkts DSP-kjerne designet spesielt for innebygde og høyt integrerte system-på-chip-design () Høyfrekvent 8211 til 200 MHz 0,13u verste saksprosess Strømforbruk: Aktiv modus - ved hjelp av full DSP-funksjon Slow-modus - klokkeslett og strømforbruk, lineært delt, i forhold til aktiv modus med en brukerdefinert faktor og Stopp-modus - kun lekkasjespenning Høy kode tetthet ved bruk av 16-biters instruksjons bredde CEVA-X1620 DSPCEVA-X1620 er den første implementeringen av CEVA-X DSP-familien, bestående av 16-biters databredde og to MAC-enheter () CEVA-X1620-målmarkeder inkluderer 3G-mobiltelefoner og programvareradio, smarttelefoner PDAer, Video og Lydbehandling for mobile enheter, VoIP-gatewayer og bredbåndsmodemer og hjemmeunderholdning (Digital TV, HDTV, PVR, HD-DVD) Dual MAC 16-biters fastpunkt DSP Kombinasjon av VLIW - og SIMD-arkitekturkoncept Tilgjengelig som en del av CEVA-verktøykassen Programvareutvikling Envi ronment () Prosjektbygg optimaliserer: Oppretter optimaliserte byggekonfigurasjoner, simulerer og profiler flere applikasjonsscenarier basert på kundens applikasjon og eksakte systemforhold DSP og kommunikasjonsbiblioteker: C-callable assembly optimaliserte funksjoner, forbedrer ytelse og utviklingstid for DSP og kommunikasjonsapplikasjoner betydelig Application Profiler: En syklus nøyaktig C-nivå applikasjon og minne delsystem profiler En lav-effekt, høy ytelse, dual Multiply-Akkumulate (MAC), 16-bit, fast punkt DSP kjerne () Integrert, programmerbar lydplattform: DSP kjerne og delsystem Bredt utvalg av lydkodeker Kort tid til markedet Lav risiko () Robust ytelse: Lav pris - 0,5mm2 for DSP ved 65nm prosess Lav effekt - 0,5 mW for stereo MP3-dekoder Sterk teknologiarv: Leverer på utbredt CEVA-TeakLite teknologi Audio codecs distribuert på nøkkelcellulære og forbrukerenhetsmarkeder Enkeltkildeløsning: Reduserer risiko og løsningskompleksitet AMC-D24AF 4-RF2 er et høyt integrert AdvancedMC (AMC) - kort med to bredbånds RF-transceiverkanaler. Modulen22683648482s hovedprosessor er KeyStone2268222162 II-arkitekturbasert TCI6638 digital signalprosessor (DSP) ARM194174 SoC, som inkluderer åtte TMS320C66x DSP-kjerner, samt fire ARM Cortex194174-A15-kjerner for høyere lagbehandling. Modulen har også to C6678 DSPs, pluss en stor Xilinx Kintex-7 FPGA. () AMC-D1F1-1200An AdvancedMC-modul som tilbyr en kompakt, høy ytelse DSPFPGA signalbehandling løsning for AdvancedTCA og MicroTCA systemer () Texas Instruments TMS320C6455 digital signalprosessor kjører på 1,2 GHz og en Virtex-4 FX100 FPGA fra Xilinx optimalisert for applikasjoner krever high-end-signal IO-båndbredde i en kompakt mid-height AMC formfaktor, for eksempel trådløs baseband, bildebehandling, forsvar og luftfart. Gir en kombinasjon av DSP - og FPGA-ressurser, med raske og fleksible koblinger til eksterne data og over 256 MB av innebygd minne Et høyt integrert AdvancedMC-kort basert på TI22683648482s TCI6636 og TMS320C6678 DSP SoCs pluss en stor Xilinx Kintex-7 FPGA og 4x4 RF. AMC-D24A4-RF4 er et ekstremt høy ytelse ARM, DSP og FPGA basert prosesseringskort som inkluderer fire integrerte, fleksible bredbånds RF-transceiverkanaler. Modulen er rettet mot LTE, LTE Advanced og 5G systemer som krever MIMO teknologier og muliggjør fullstendig RF-Layer 3 trådløs basestasjon funksjonalitet som skal implementeres på et enkelt AdvancedMC-kort. Modulen22683648482s hovedprosessor er TCI6636 KeyStone II DSPARM SoC. Den inneholder åtte C66x DSP-kjerner, samt fire ARM Cortex2268222162-A15-kjerner for høyere lagbehandling. Modulen har også to TMS320C6678 oktal C66x core DSPs. Alle prosessorer er tett koblet via TI22683648482s Hyperlink-grensesnitt og Ethernet-infrastrukturen på kortet med Serial RapidIO (SRIO) bakplane-tilkobling som gir inter-card-tilkobling. Det er også en stor Kintex-7 FPGA for ekstra sambehandling og for å administrere RF-grensesnittet. FUNKSJONER: 1 Texas Instruments TCI6636 SoC DSP 2 Texas Instruments TMS320C6678 SoC DSPs Hver DSP har 8 kjerner - 24 DSP-kjerner totalt 4 RF-kanaler, hver støtter FDD eller TDD 662MHz - 3.84GHz 20Gbps Gen2 RapidIO til AMC.4 kompatibel backplane 3x SFP til FPGA, opptil 10,3 Gbaud Gigabit Ethernet-grensesnitt Integrert GPS-mottaker Dobbel bredde, AMC-kort i full størrelse. () AMC-2C6678L er et høyverdig DSP-kort. Den drives av de nyeste Texas Instruments SoC TMS320C6678 DSPs. 16 C66x DSP-kjernene er koblet sammen med høyhastighets Hyperlink, PCIe og SRIO-koblinger, og er ideell for en rekke DSP-behandlingsprogrammer med høy ytelse, inkludert bildesensorbehandling, telekommunikasjon og trinnkontroll. I tillegg kan den brukes til DSP-basert akselerasjon av tale - og videoprogrammer. Kjernene opererer på 1,25 GHz og har den kombinerte effekten til å behandle 320 GFLOPS og 640 GMACS. Styret leveres med programvarestøttebiblioteker, og 3L Diamond støttes fullt ut på denne plattformen for avansert multiprocessor kodeutvikling. CommAgility kan støtte dine behov hvis modifikasjoner kreves for å gjøre dette produktet tilpasning til dine OEM-krav. FUNKSJONER: 2 Texas Instruments TMS320C6678 DSPs Hver DSP har 8 C66x-kjerner som opererer på 1,25 GHz (totalt 16 DSP-kjerner). PCI Express Gen 3-koblingen til AMC.1-kompatibel bakplane med ombordkobler 20gbps Gen2 RapidIO til AMC.4-kompatibelt bakplane. Full Gigabit Ethernet-infrastruktur Enkel bredde, AMC-kort i mellomstørrelse (tilgjengelig i full størrelse). . () AdvancedMC-moduler basert på den nyeste høykvalitets TMS320TCI6616 basestasjonen System-on-Chip (SoC) og TMS320C6670 digital signalprosessor (DSP) fra Texas Instruments Incorporated (TI) () De to modulene utnytter den bransjeledende kraften til TIs nye enheter og legge til høyhastighets, fleksibel IO for å levere løsninger for trådløs basestasjon og applikasjoner med høy ytelse. Modulene inkluderer også en Xtexx LX240T Virtex-6TM FPGA for ekstra fleksibilitet og sambehandlingsfleksibilitet. AMC-2C6616 inneholder TIs nye CI6616 SoC basestasjon, og er rettet mot LTE trådløse basestasjonsprogrammer, inkludert utvikling, forsøk og endelig distribusjon i feltet. AMC-4C6678 er et DSP-kort med høy ytelse. Den drives av de nyeste Texas Instruments SoC TMS320C6678 DSPs. 32 C66x DSP-kjernene er koblet sammen med høyhastighets Hyperlink, PCIe og SRIO-koblinger, og er ideell for en rekke DSP-behandlingsprogrammer med høy ytelse, inkludert bildesensorbehandling, telekommunikasjon og trinnkontroll. Kjernene opererer på 1,25 GHz og har den kombinerte effekten til å behandle 640 GFLOPS og 1280 GMACS. Styret leveres med programvarestøttebiblioteker, og 3L Diamond støttes fullt ut på denne plattformen for avansert multiprocessor kodeutvikling. FUNKSJONER: 4 Texas Instruments TMS320C6678 DSPs Hver DSP har 8 C66x-kjerner som opererer på 1,25 GHz (32 DSP-kjerner totalt) PCI Express Gen 3-kobling til AMC.1-kompatibelt bakplane med ombordkobling 20gbps Gen2 RapidIO til AMC.4-kompatibel backplane. Full Gigabit Ethernet-infrastruktur Enkelt bredde, AMC-kort i full størrelse. (AMC-K2L-RF2) AMC-K2L-RF2 AMC-K2L-RF2 er et billigt ARM - og DSP-basert prosesskort basert på TIs TCI6630K2L SoC, som inkluderer to integrerte bredbånds RF-transceiverkanaler, alt i kompakt Advanced Mezzanine Card (AMC) formfaktor. Det er designet for å støtte trådløs basebandbehandling og et 2x2 MIMO-luftgrensesnitt i radiotestsystemer, små celler og UEer for standard eller spesialiserte LTE - og LTE-Advanced-systemer opp til og utover Release 10. () VPX-D16A4-PCIEThe VPX - D16A4-PCIE er et robust, høyverdig DSP - og FPGA-basert kort i den kompakte VITA 65, 3U OpenVPX formfaktoren, med et høyhastighets Gen2 PCI Express (PCIe) grensesnitt. () AMC-2C6678The AMC-2C6678 er et høyhastighets signalbehandling AMC-kort med 16 DSP-kjerner og FPGA-ressurser. Den drives av de nyeste Texas Instruments TMS320C6678 DSPs pluss en Xilinx Virtex-6 FPGA. Den er ideell for en rekke høypresterende DSPFPGA-behandlingsapplikasjoner, inkludert telekom og bildebehandling. En IDT CPS-1848 Gen2 SRIO-bryter gir en 20 Gbps per port Serial RapidIO-infrastruktur. Nå med 1,2 GHz DSPer hver med 1 GB SDRAM. (). CA-AMC-D4F1A enkelt bredde AdvancedMC modul designet for høy båndbredde, høy ytelse signalbehandling, som gir DSP - og FPGA-behandling og 10 Gbps Serial RapidIO () Et DSP-kort for matteintensive multikanal-telefoni-applikasjoner som Internett-stemme - og faksgateways () Leverer opptil 7200 MIPS av digital signalbehandlingskraft, nok til å behandle (dvs. tale og faks over IP) opptil seks T1- eller E1-linjer i sanntid Kan utstyres med en rekke standard WAN - og telefonens mezzaniner, inkludert T1, E1, SCSA og ATM Kan utstyres med opptil 72 100 MHz TMS320VC549 DSPs, som er implementert som seks mini-PCI-mezzaniner En DSP-kompakt CompactPCI-kort med høy tetthet () Robust, høy ytelse OpenVPX DSP (digital signalbehandling) motor basert på Intel neste generasjons quad-core prosessorteknologi () VPX3-453 3U VPX Virtex-68640D DSP VPX3-453 er en høyverdig, liten formfaktor DSP-motor som kombinerer en Xilinx194174 Virtex174-6 FPGA og en Freescale174 Power Architectur e MPC8640D prosessor. Dette lille formfaktor 3U VPX (VITA 4648) - kortet er ideelt for SWaP-begrensede miljøer, og er designet for å støtte hele robust driftstemperaturområde på 40 ° C. VPX3-453 gir raskere og enklere integrasjon av avansert DSP og bildebehandling til innebygde systemer designet for krevende Radar Processing, Signal Intelligence, ISR, Image Processing og Electronic Warfare applikasjoner. () DSP-baserte dataoppkjøpssystemer En linje av flere prosessor DSP-kort og moduler integrert i komplette datainnsamlings-undersystemer () Utviklet for industrielle prosess - og styringsapplikasjoner Lever fra 6400 MIPS fastpunkts DSP-ytelse opptil 16 GFLOPS flytpunktsytelse i en enkelt 6U VMEbus eller CompactPCI-spor Basert på Ixthos CHAMP-arkitektur ProWare PMC-440A robust FPGA PMC-kort for opptak, behandling og utdata av data fra høyhastighetssensorer som elektro-optisk infrarød (EOIR) og radarsystemer () Onboard FPGA-leveranser opptil 20 milliarder driftssec ytelse for FFT og digital filter DSP-funksjoner Kan konfigureres med en av to versjoner av Xilinx Virtex-II Pro FPGA: XC2VP20 (9.280 logisk skiver88 18x18 multiplikatorer) eller XC2VP40 (19,392 logisk skiver192 18x18 multiplikatorer) 64 - bit, 66 MHz PCI-grensesnitt med støtte for PCI-X CHAMP-AV5 6U VMECurtiss-Wright Kontrollerer første DSP-motor med den nye Intel Core i7-prosessoren () Brin gs flytende punkt ytelse av Intel Core i7-arkitekturen til VME64x formfaktor standard Ved hjelp av et par 2,53 GHz dual-core Core i7-prosessorer, leverer CHAMP-AV5 opptil 81 GFLOPS av ytelse med høy båndbredde PCIe-arkitektur, med innebygde PCIe-tilkoblinger mellom prosessorene og PMCXMC-stasjonene CHAMP-XD2M 6U OpenVPX Intel Xeon D DSPDen 6U OpenVPX CHAMP-XD2M robuste Intel Xeon D-modulen er utviklet for bruk i høy minnekapasitet, komputantintensive industri-, luftfarts - og forsvarsapplikasjoner som gjør det mulig for utviklere av høy ytelse Embedded Computing (HPEC) - systemer for å dra full nytte av den enestående ytelsen til today22683648482s fremste Xeon-prosessor D-arkitektur. () CHAMP-AV IVDen tredje generasjonen av våre quad-PowerPC DSP-kort med QuadFlow-arkitekturen som gir høy båndbreddeforbindelser mellom fire prosessorer (7447A7448) (Quad PowerPC 7447A7448-prosessorer på opptil 1,25 GHz Opptil 512 MB DDR-250 SDRAM med ECC per prosessor ( 2 GB totalt) og 64 Kbytes L1 og 1 Mbyte (7448) L2 interne kufferter som opererer med kjerneprosessorhastighet QuadFlow-arkitektur med 3,2 GBs topp-PCI v2.2-kompatibelt, 64-biters universelt PCI-kort () En høy ytelse DSP-kort optimalisert for høy båndbredde, lavt latens digital signalbehandling applikasjoner () En høy ytelse DSP-kort optimalisert for høy båndbredde, lav-latency digital signalbehandling applikasjoner () En TMS320C6200 DSP design suite som støtter TIs eXpressDSP sanntids programvare teknologi () Bit-sant fast og flytpunkt DSP-systemdesign C-kodegenerering Integrerer med Code Composer Studio for rask prototyping En ny versjon av SystemView som reduserer designtid for DSP og wir eless kommunikasjonssystemer ved å tilby flere modellerings-, analyse - og feilsøkingsfunksjoner () Design og simulering sørger for at RF-fronten, AD-konverteren og DSP-funksjonene alle samhandler sammen korrekt. Inkluderer forbedringer av SystemViews analyse og feilsøking. En designer kan Spor et signal gjennom et helt system ved å flytte en virtuell sonde til utgangen av hver blokk av blokkdiagrammet under systemsimulering. Et systemnivådesignverktøy for DSP - og kommunikasjonsapplikasjoner () Gir Simulink-integrering, forbedrede filterdesignverktøy og en betydelig nytt tilbud av modeller for kommunikasjonsapplikasjoner Forbedret kommunikasjonsbibliotek inkluderer TDMA multiplexerdemultiplexer, OFDM modulasjonsdemodulering, Gold Code Generator, Puncture, Depuncture og QAM detektor, mapper, demapper-modeller. RFAnalog og DSP-bibliotekene inneholder også nye modeller Et universelt DSP-utviklingssystem som tillater konstruksjon av skalerbare DSP-systemer () Syste m kommer i en 19-tommers 3U-robust kabinett med en enkelt Atlas-brett Atlas I-brettet har to 120 MFLOPS flytende punkt ADSP-21060 prosessorer Atlas II-brettet har to 480 MFLOPS ADSP-21160 prosessorer Virtuoso 4.1An integrert utviklingsmiljø for real-time embedded systemer som inneholder en fire-lags, mikrokjernelbaserte RTOS som er optimalisert for DSP og ASIC-kjerner () Krever 2 Kwords til 10 Kwords minne, og støtter DSPs og RISC-kjerner fra Analog Devices, ARM, Infineon og Texas Instruments Tool Suite inneholder en prosjektleder, et kjerneoptimaliserende systemgenereringsverktøy og grafiske analyse - og feilsøkingsverktøy for DSPs. Planleggingsalternativer inkluderer runde robin med prioritering, tidsskåring og prioritert preemptive planlegging. En universell digital signalcomputer () CompactPCI formfaktor Hosted av et Pentium-løpende Windows NT Target-system består av en eller flere DSP-kort med 2 ADSP-21060 (SHARC) hvert A TMS320C620x fast punktbasert universelt digitalt signal MSC8156EVM (MSC8156EVM) er et kostnadseffektivt verktøy beregnet for ingeniører som evaluerer MSC815x og MSC825x-familien til Freescale Digital Signal Processors (DSPs). MSC815x og MSC825x-familien av DSP er høyt integrerte DSP-prosessorer som inneholder en , to, fire eller seks StarCore SC3850-kjerner Familien støtter rå programmerbare DSP-ytelsesverdier som spenner fra 8 GMACer til 48 GMACer, hvor hver DSP-kjernen kjører ved 1 GHz. Disse enhetene målretter høybåndsbredde, høyt beregnende DSP-applikasjoner som 3GPP, TD - SCDMA, 3G-LTE og WiMAX basestasjon applikasjoner samt luftfart og forsvar, medisinsk bildebehandling, video, tale og test og måleapplikasjoner MSC8256The MSC8256 er basert på bransjens høyeste ytelse DSP-kjerne, bygget på StarCore-teknologi, og designet for avansert Behandlingskrav og evner for dagens høyytende, high-end industrielle applikasjoner for medisinsk bildebehandling, romfart, forsvar og avansert test og målemarkeder () Den leverer bransjeledende ytelse og strømbesparelser, og utnytter 45 nm prosess teknologi i en høyt integrert SoC for å gi ytelse som tilsvarer en 6 GHz, enkeltkjernenhet. MSC8256 vil hjelpe utstyrsproduktører til å lage sluttprodukter og tjenester som integrerer mer funksjonalitet i et mindre maskinvarefotavtrykk. MSC8256 DSP gir høy ytelse og integrering, og kombinerer seks nye og forbedrede, fullt programmerbare SC3850-kjerner, som kjører opptil 1 GHz . SC3850 DSP-kjernen er uavhengig vurdert for å muliggjøre 40 prosent mer bearbeidingskapasitet per MHz enn den nærmeste DSP-konkurransen. En høy ytelse intern RISC-basert QUICC Engine-delsystem støtter flere nettverksprotokoller for å sikre pålitelig datatransport via pakknettverk, mens signifikant avlastning av behandling fra DSP-kjernene MSC8156The MSC8156 er basert på bransjens høyeste ytelse DSP-kjerne, bygget på StarCore-teknologi, med ekstra ytelse fra en Multi-Accelerator Platform Engine (MAPLE-B) for rask Fourier Transforms (FFT), Inverse Fast Fourier Transforms (iFFT) , Diskrete Fourier Transforms (DFT), Inverse Discrete Fourier Transforms (iDFT) og Turbo og Viterbi Dekoding () MSC8156 støtter de avanserte prosesseringskravene og egenskapene til dagens høyytelses medisinske, romfart og forsvar og avanserte test - og målingsmarkeder. Det leverer industri - leading ytelse og strømsparing, utnytte 45 nm prosess teknologi i en høyt integrert SoC for å gi ytelse som tilsvarer en 6 GHz, enkeltkjernenhet. MSC8156 vil hjelpe utstyrsproduktørene til å lage sluttprodukter og tjenester som integrerer mer funksjonalitet i et mindre maskinvarefotavtrykk. En enhet som gjør at vertsfeilsystemet kan kommunisere med en Motorola DSP-målsystem gjennom JTAGOnCE-kontakten () Kommandoer som er innført fra verten, analyseres, og en rekke kommandopakker med lav nivå sendes til kommandokonverteren, som igjen oversetter lavnivåkommandopakker til serielle sekvenser som overføres til mål DSP via OnCE-porten Command Converter Kit inneholder en Command Converter, en programvare for utviklingsverktøy-CD og Command Converter-produktdokumentasjon. Command Converters inkluderer Ethernet, PCI, Parallel og Universal (ISASBUS). . Core SC140-basert DSP med en 300 MHz DSP-kjerne Fire ALUer gir 1200 DSP MIPS, 150 MHz programmerbar nettverksprotokollmotor, 512 Kbytes onchip SRAM, 100 MHz 64-bits eller 32-biters PowerPC-bussgrensesnitt, og en programmerbar minnekontroller på - chip 300 MHz forsterket filterkompressor og sentralisert DMA-motor Programvare på høyt nivå som gir mulighet til å aktivere programvaren for raskt å markedsføre () Alternativ for rammevalgsprogramvaren gir fleksibilitet for å legge til algoritmer og tilkoblinger Styrings - og biblioteksnivåprogramvare for optimal kontroll Siste generasjons DSPs for lavpris og strømforbruk per kanal DSP56F801A DSP-kjerne basert på en Harvard-stilarkitektur som består av tre utføringsenheter som opererer parallelt, slik at så mange som seks operasjoner per instruksjonssyklus () Programmeringsmodul for mikroprosessor-stil og optimalisert instruksjonssett gjør det mulig å generere effektive , kompakt kode for både DSP-stil og MCU-stil applikasjoner Instruksjonssettet er svært effektivt for C-kompilatorer for å aktivere rask d utbygging av optimaliserte kontrollapplikasjoner Integrert program Flash og data Flash-minne En 24-bits flerkanals lyddekoder DSP optimalisert for kostnadssensitive forbruker lydprogrammer () Støtter alle de populære multikanal-lyddekodingsformatene, inkludert Dolby Digital Surround, Moving Picture Experts Group Standard 2 (MPEG2) og Digital Theatre Systems (DTS), i en enkelt enhet med tilstrekkelige MIPS-ressurser for kundedefinerte etterbehandlingsfunksjoner som basestyring, 3D virtuell surround, Lucasfilm THX5.1, lydfeltbehandling og avansert utjevning. Bruker den DSP56300-kjerne med én instruksjon per klokke, samtidig som den beholder kodekompatibilitet med DSP56000-kjernefamilien. Inneholder lydspesifikke eksterne enheter og en surround-dekoder om bord, og tilbys i 100 MHzMIPS og 120 MHzMIPS-versjoner på 3.3V. En DSP-kjerne basert på en Harvard-stilarkitektur bestående av tre kjøringsparametre som opererer parallelt, slik at så mange som seks operasjoner per instruksjonssyklus () Programmeringsmodul for mikroprosessor-stil og optimert instruksjonssett tillater generering av effektiv, kompakt kode for både DSP - style and MCU-style applications Instruction set is highly efficient for C Compilers to enable rapid development of optimized control applications Integrated program Flash and data Flash memories A StarCore-based DSP with four 300 MHz Star () Core SC140 DSP extended cores 16 ALUs onchip deliver 4,800 MMACS, 12 G RISC MIPS (Performance equivalent to a 1.2 GHz SC140 core) Four 300 MHz EFCOPs P2020-MSC8156 AdvancedMCThe Freescale P2020-MSC8156 AdvancedMC (AMC) reference design is a multi-standard baseband development platform for the next generation of wireless standards such as LTE, WiMAX, WCDMA and TD-SCDMA. () A single-chip RISC microprocessor () 32-bit RISC-type SuperH RISC engine architecture CPU with digital signal processing (DSP) extension Cache memory, on-chip XY memory, and memory management unit (MMU), as well as peripheral functions required for system configuration Includes data protection, virtual memory, and other functions provided by incorporating an MMU into a SuperH Series microprocessor (SH-1 or SH-2) USB-connected Software-Defined Digital Radio system () Ready-to-Go SystemA ready-for-use low-cost system including USB-connected programmable FPGA and DSP hardware () Includes USB-connected FPGADSP hardware of the users choice, USB cable, IO cables to interface to peripherals, main power supply unit, and CD containing software tools, examples, and documentation Connects to PCs using high-speed USB Allows users to download FPGA designs, then exchange data between the FPGA and PC at speeds up to 40 Mbps HERON DSP SystemsHERON high-performance modular signal processing systems for PCI-based, USB connected, and Embedded use are programmable and reconfigurable, using common APIs to provide compatibility and complete flexibility () Choose one or combine any number of our off-the-shelf modules Modules with Xilinx Virtex FPGA (with external memory options plus digital and analog IO choices) and TI 8216C6000 DSP Mount selected modules on a HERON module carrier which provides real-time data connections with 400 Mbps possible in each direction simultaneously HERON-IO2A FPGA module with Virtex II 1M gates plus two channels of 12-bit 125 MHz AD and two channels of 14-bit 125 MHz DA () Analog serial bandwidth of 500 MHz in and 145 MHz out When fitted to a HERON module carrier, can have its FPGA 8220program8221 downloaded from the PC over the HERON serial bus, allowing users to program and reprogram the FPGA IP available for commonly used functions HERON-FPGA12HERON module with Virtex-4FX12 FPGA plus DDR SDRAM, flash memory, and 60 bits digital IO () HERON-FPGA3A FPGA m odule with digital IO () PlugPlay PCI 2.1 33MHz32-bit slave, MasterSlave (optional) support Up to 400k gates in Spartan-3 family FPGAs Spartan-3 FPGAs system clock rate up to 320 MHz A configurable and scalable RTOS architecture for convergent processing () Uses two real-time kernels: RTXCss, and single-stack, thread-based kernel, and RTXCms, a multi-stack task-based kernel Meets the requirements of real-time, control-processing, or Digital Signal Processing (DSP) applications Supported processors: ARM 77T, 99T, Motorola DSP56F800, Motorola DSP65300600, Motorola ColdFire family, Motorola PowerPC, Motorola StarCore MSC8101, and Texas Instruments TMS320C54x, TMS320C55x . A real-time multi-tasking kernel (RTXC) for Motorolas DSP 56303307309EVM digital signal processors () Motorolas Suite56 Software Development Tools include a processor simulator, C compiler, assembler and linker, and a hardware debugger This suite of tools and RTXC form a new embedded development environment Features include: (1) small code footprint of about 1,500 to 4,500 words (2) full source code and no run-time royalties (3) support of nested interrupts (4) extensive interrupt handling models and examples (5) macros to simplify the creation of interrupt service routines (6) support for mixed assembly language and C programming and (7) a GUI-driven system generation utility that allows specification and generation of RTXC system objects without having to know the internals of the kernel objects A software development kit based on Texas Instruments TMS320DSC2 DSP () Provides developers access to the complete DSPLinux simulation and hardware environment through DevelopOnline DSPLinux is optimized for multimedia applications in which DSPs offer high processing power with low battery consumption Focused on dual-core ARMDSP architectures, with the Linux kernel residing on the ARM processor to control the operation of the DSP From Microchips PIC24 16-bit MCUs through the dsPIC 30 to the dsPIC 33, DSPnano has seamless support including CC integrated development environment (IDE), a DSP RTOS, and DSP libraries () CC IDE based on Eclipse with a highly productive user interface DSPnano operating system level simulator Seamless integration with Microchips MPLAB IDE for instruction-level simulation, compiling, and debugging using ICD2 or REAL ICE A signal processing operating system intended for small signal processors and small DSP networks () Enables adding real-time signal processing capabilities () PCI Mezzanine Card (PMC) is a widely used industry standard for small-sized mezzanine modules A high-performance DSP processor and graphical application development in LabVIEW Suitable for real-time processing applications SI-C6713DSP-PC104pAn embedded PC104-Plus DSP board () Texas Instruments TMS320C6713 DSP at 300 MHz Up to 256 MB of SDRAM using conventional 144-pin SODIMMs 2.25 W typical power consumption PCI, CompactPCI, PMC, PC104-Plus form factors () SI-C6713DSP-PCIDSP board for data acqusition, measurement, and digital control applications () SI-C33DSP-cPCIReal time software accelerator board for LabVIEW based on Texas Instruments TMS320VC33 family of floating point DSPs () SI-C6713DSP-(PCI)Real time software accelerator board for LabVIEW and Visual Basic based on TIs TMS320C6x family of floating point DSPs () DSP board for PC104-Plus () 1,800 MFLOP peak performance with C6713, 1,200 MFLOPs with C6711, 32 bit floatingfixed point precision Up to 256 MB SDRAM, using conventional PC133 SDRAM SODIMM format Full 32 bit bi-directional PCI initiated bus mastering, with 132 MBps peak transfer rate A board providing high-density DSP resources and a high level of general purpose, programmable MIPS per square mm () Compliant with 64xx IP video, transcoding, wireless, and voice algorithms Includes WinXP and Linux drivers and C code API, full DSP software, DSP with real-time examples Up to eight C6414, C6415, or C6416 DSPs A DSP board that combines a 32-bit floating-point TMS320C44 DSP with up to 512K x 32 SRAM and high-speed, multiple IO paths for connectivity to analog IO or other peripheral PC104 boards or other C4x processors () Four comm - port connectors, 32-bit 8220GlobalBus8221, and EPROM or Flash EEPROM site Supported by DSPower and Hypersignal software . SigC5502Dual DSP 24-bit audio board () Dual 300 MHz C5502 processor sites Stereo 24-bit 96 kHz audio IO, 100 dB SNR typical Single-ended and differential-ended audio connector options SigC67xx-SODIMMA quad processor DSP module () Up to four Texas Instruments C67xx processors Up to 5.4 GFLOPS 32-bit floating-point performance 4M x 32 off chip SDRAM and 64k x 32 zero-wait-state onchip SRAM per processor 300 to 480 MIPS Multiprocessor DSP Modules () 384768k x 16 SRAM Three 100 to 160 MHz C549, C5402, C5409, or C5416 cores, in three 144-pin GGU packages, each with separate 2.5v (or 1.8v) core and 3.3v peripheral voltages 128k x 16 or 256k x 16 zero-wait-state external SRAM per core A PTMC card that condenses the Texas InstrumentsTelogy Phase III High-Density VoIP reference design 8211 including DSP farm and network processor 8211 into PMC form factor () IP telephony applications include echo can farm, transcoding server, media gateway, complete soft switch solution using onboard host proce ssor, Asterisk PBX, and more Telogy software compliant OC-3 channel capacity A modular DSP resource board () Provides up to 1920 MIPS in a single PC104 form factor Accepts off-the-shelf processor modules with Texas Instruments C54xx DSPs and 16-bit audio and speech IO modules, and custom modules, for example H.110 or MVIP subset High-speed host interface Signal Ranger Mk3 is a DSP board featuring a TMS320C6424 DSP running at 590 MHz and a XC3S400 FPGA (Signal Ranger Mk3 Pro. version only) () This DSP board provides 6 analog IOs (96 kHz24-bit) It has been designed for pro-audio and high-performance control applications Communication interfaces include a high-bandwidth USB 2 interface as well as an Ethernet communication interface that allows the remote control of the DSP board over the web (an IP Stack DSP firmware is included) Signal Ranger MK2DSP: TMS320C5502 16-bit fixed point DSP, running at 300 MHz, with 32 Kwords of on-chip RAM () TIGER DSP is a digital signal processing board featuring a Xilinx Virtex 6 FPGA, data memory, and various host connections. () A 6U VMEbus board with a VME64 masterslave interface () Two processors available: single, dual, or quad 1600 MIPS, 200 MHz TMS320C6201B DSPs or single, dual, or quad 1 GFLOPS, 167 MHz MS320C6701 DSPs Up to 2 Mbytes of SBSRAM and 64 Mbytes of SDRAM Hurricane, a single chip PCI bridge optimized for DSP systems CompactPCI DSP system supports TMS320C6701 architecture () Dual or quad processor with distributed shared memory architecture provided by the Hurricane PCI-to-DSP bridge chip SBSRAM distributed shared memory Additional IO capabilities include IP Modules, PMC modules, DSP-Link 3, custom IO, and Spectrum-developed PEM modules which provide 400 Mbytessec of IO bandwidth per DSP Single-channel digital radio receiver module with software demodulation libraries () This surveillance solution combines an AD converter, digital down converter, TMS320C44 DSP processor, and a DA converter on a single-wide TIM-40 module Designed to work with Spectrums LeMans VXI product . InglistonA quad PCI DSP system based on the 250 MHz, fixed-point C6202 processor () A high-performance, programmable digital interface that connects Spectrums 8216C6000-based DSP boards to custom and standard IO systems () Provides up to 100 Mbitssec of IO bandwidth to each 8216C6000 DSP Total data throughput of 200 Mbitssec Programmed to interface to virtually any type of digital IO devices, including digital cameras, motor controllers, and as standard and custom parallel interfaces Single-channel digital radio receiver module with software demodulation libraries () This surveillance solution combines an AD converter, digital down converter, TMS320C44 DSP processor, and a DA converter on a single-wide TIM-40 module Designed to work with Spectrums LeMans VXI product . Multiplatform digital radio receiver consists of MDC44DDC 50 MHz TIM module (1 MByte or 4 MBytes), MD70MAI 70-Msamplesec AD converter TIM module, 50 KHz analog daughter module and DDR cable kit () Scaleable solution maintains interoperability with VXI, ISA, PCI and VME platforms Incoming signals from an antenna system digitized by TIM-40 based AD converter and forward via 1.4 Gbits G-Link network to one or more TIM-40 based receiverDSP blocks for demodulation and analysis Easily daisy-chained . An octal VMEbus processing engine () Eight 250300 MHz 8216C6203 fixed-point processors Peak performance of 16,00019,200 MIPS Solano-based architectures provides 200 Mbytessec full-duplex links between processors PRO-4600A 3U CompactPCI processing engine that uses a combination of FPGA, DSP, and GPP to support black-side signal processing for software defined radio (SDR) applications () 3U CompactPCI form factor Available in conduction-cooled and air-cooled versions Rugged conduction-cooled carrier versions follow the IEEE 1101.2 specification and operate with ANSI VITA 20 compliant XMC modules Barcelona-HSA 6U, hot-swap CompactPCI board combining DSP multiprocessor hardware and software tools for designing high availability systems () A DSP-based digital radio PMC mezzanine for use with Spectrums TMS320C6x-based carrier products () The PMC-MAI is a 65 M samplessec analog input PMC, the PEM-2PDC is a dual-programmable down converter module, and the PEM-4PDC is a quad-programmable down c onverter module Both PEM modules are based on Spectrums Processor Expansion Module (PEM) open specification For commercial and military signals intelligence or surveillance applications ePMC-8310A Texas Instruments TMS320C6416C6415 DSP-based multiprocessing engine for communications applications () Choice of one or two 600 MHz TMS320C6416 or TMS320C6415 fixed-point DSP processors with a peak performance of 4800 MIPS per processor Integrated Viterbi and Turbo co-processors Eight dedicated high-speed data paths to the DSPs, connected through a programmable router for dataflow reconfigurability AcceleraA graphically-driven, modular, system-level software tool, designed to speed the development of multiprocessor DSP applications for Spectrums multi-DSP TMS320C620203 products () A PCIe-based carrier card with dual XMC sites () Can be used within a PC-based system to interface to Spectrum FPGA, DSP, and IO processing engines Flexible data routing architecture, allowing numerous combinations of FPGA, DSP and GPP signal processing devices Supports applications requiring high-speed, low latency, deterministic data paths The LeMans 840 MFLOP octal TMS320C4x VXIbus master board can host up to six single-wide or four double-wide C4044 DSP modules and TIM-40 form factor SRAM, DRAM, EDRAM, or IO modules () Supports VXI shared memory, VXI masterslave modes, and 80 Mbytessec data transfers via the HP local bus Features JTAG input and output connectors, a test bus controller, and device driver support via VISA or SICL . An expansion module that connects high-speed digital signal processors (DSPs) to the Internet () Allows a sophisticated collection of DSPs to connect to EthernetInternet directly and without involvement of a host computer Uses Texas Instruments 225-MHz TMS320C6713 DSP, based on TIs high-performance, advanced VelociTI VLIW architecture NetSilicon Net-50 ARM CPU ICE105: Embedded IO Programmable SystemSUNDANCE is a worldwide supplier and manufacturer of industrial-class PCIe104 digital signal processing (DSP), configurable small form factors and COTS embedded systems. The ICE105 is a rugged system built around a complete range of PCIe104 small form factor, stackable IO-configurable and programmable solutions. () A library of floating-point DSP vectors and functions () Broad range of callable functions significantly reduces the development time of many DSP applications targeting Texas Instruments (TI) TMS320 DSP-based platforms Hand-coded and optimized functions Includes a data conversion unit that facilitates the conversion of fixed-point and integer formats into floating-point units, as well as the conversion of floating-point units into integer formats A platform for telecom, image processing, medical, and industrial systems () A CompactPCI, multi-DSP system () Four C6416, 600-MHz DSPs, with 32 MB of private SDRAM memory for each DSP Up to 800 MBps IO bandwidth per DSP Optional shared memory interface for each DSP A DSP TIM-40 mezzanine that incorporates four 60 MHz TMS320C44 DSPs, and can be used to provide up to 16 DSPs on a VMEbus carrier board () Configured with either 512 Kbytes or 2 Mbytes of SRAM per processor Memory is divided between the processors local and global buses, ensurin g optimal performance from the C44s modified Harvard architecture . SMT7005Four C6201 200MHz DSPs 16MB SDRAM 512KB SBSRAM of private memory for each DSP Up to 800Mbytess IO bandwidth per DSP Optional shared memory interface for each DSP () SMT7006Four C6701 167MHz DSPs () 16MB SDRAM 512KB SBSRAM of private memory for each DSP Over 800Mbytess IO bandwidth per DSP using Sundance Digital Bus and Datapipe Links Optional shared memory interface for each DSP Direct connection to C6000 DSP systems () High accuracy signal source through stringent design criteria communications, base stations and Zero-IF subsystems Wireless local loop (WLL) Local Multipoint Distribution Service (LMDS) A TIM mezzanine that hosts one or two TMS320C6x DSPs () Up to 32 Mbytes of onboard memory Enables a truly distributed DSP processing system The modules can be fitted to a VXI carrier board, giving performance from 1 to 8 GFLOPS when using the TMS320C6701 DSP SMT387Integrated DSP, memory, flash, and storage solution () Includes the latest generation Serial ATA controller, a 600 M Hz DSP, and Virtex-II Pro Works in an array of modules as a slave or host Can run standalone and use the on-module flash for booting and control of the disk array SMT417Conduction cooled PMCXMC card with 2 TI DSP at 1 GHz each and a Xilinx XC2VP50 FPGA and much memory () Combining a Texas Instruments TMS320DM642 DSP-based digital media processor at 720 MHz and a Xilinx Virtex-4 FX-60 FPGA, the SMT339 packs huge compute power into a small development board () Software support includes TIs Code Composer Studio Integrated Development Environment (IDE) and 3Ls Diamond FPGA Interfaces include serial ports or the Rocket Serial Link Used with a TIM carrier such as the SMT130 for PCI-104 or standalone, designers can be up and running quickly . SMT130Onboard XDS-510 compatible JTAG Master () Global bus bandwidth in excess of 100 MBps Host interface via ComPort in excess of 10 Mbps Can support multi-DSP and FPGA resources A media processing solution offering simultaneous support for Triple Play convergence voice, video, and data (faxmodem), all running on a single DSP () Suitable for equipment manufacturers who develop media gateways, CTI products, and other Media over Packet (MoP) applications Includes the SurfUP Open DSP Framework that enables integration of user-defined algorithms into the DSP, based on simple and intuitive APIs that interface with Surfs DSP software Quick integration for reduced time-to-market SurfUPDSP software components comprised of a media processing solution offering simultaneous support for Triple Play convergence (voice, video, and data (faxmodem)) all running simultaneously on a single DSP () Equipment manufacturers who develop media gateways, CTI products, and other Media-over-Packet (MoP) applica tions can integrate a specific media type into their DSP software framework and gain from Surfs robust and field-hardened enabling technologies Powered by an easy-to-use and layered API, the SurfUP DSP software components are ANSI-C compliant (with minimal assembler code for optimization) for cross platformcompiler support Field-hardened DSP software components optimized to run specifically on TIs C64xx DSP generation Fully-integrated RoHS-compliant PMCPTMC DSP resource board providing multimedia processing capabilities: voice, video, and data simultaneously () PMCPTMC form-factor DSP farm, pre-integrated with leading CompactPCI and AdvancedTCA chassis Carrierenterprise-grade, field-proven, and cost effective solution saving resources and reducing RD efforts Complete media processing package for audio, video and data (fax and modem) SurfRiderAMC-EVMComprehensive application development environment () Enables telecom applications developers to handle different DSPs Stand-alone desktop u nit simulating AdvancedTCA and MicroTCA chassis for resource-efficient telecom development environment Full DSP control and monitoring over GbE connection for reduced application development and testing time SurfRiderAMCA RoHS-compliant AdvancedMC DSP resource board, preintegrated with AdvancedTCA and MicroTCA chassis () Provides flexible yet heavy-duty multimedia processing capabilities Complete media processing package for audio, video, modem, and fax Flexible and scalable modular design supporting up to 8 TI C64x DSPs onboard SurfExpressPCIeFully integrated RoHS compliant PCIe DSP resource board providing multimedia processing capability: voice, video. and data () Graph-based Physical Synthesis fast timing closure and a push-button performance boost of up to 20 percent () RTL-based Verification Technology offers the fastest method of finding functional errors in a design thanks to simulator-like visibility into a live, running FPGA with real-world stimulus Automatic Handling of DSP functions infers DSP functions from RTL and maps into vendors DSP hardware (such as MAC) ASIC design-style support built-in gated clock conversion and a DesignWare compatible library enables ASIC code to be implemented into an FPGA without modification SPW Hardware Design System (HDS)Fastest path from innovation into implementation for digital signal processing systems, applying a model-based design approach () At its core is the C Data Flow (CDF) modeling paradigm, which enables the most efficient description of digital signal processing systems which may be implemented in dedicated digital hardware or embedded software SPW Hardware Design System (HDS) is a key component in the SPW product family It accelerates the hardware design, verification, and analysis of complex, algorithm intensive Digital Signal Processing (DSP) systems Unique Synplify DSP synthesis engine 8211 Automatically creates optimized algorithm RTL architectures from your DSP model () Powerful DSP synthesis optimizations 8211 Exploration of speedareadevice technology trade-offs without changing your DSP model Comprehensive DSP library 8211 With full multi-rate support and advanced fixed-point quantization analysis M-Control feature 8211 Enables use of M-language for concise expression of complex state machine and control logic functionality An application processor for 2.5 and 3G wireless devices () Dual core architecture optimized for efficient operating system and multimedia code execution TMS320C55x DSP provides superior multimedia performance while delivering the lowest system-level power consumption TI-enhanced ARM 925 core with an added LCD frame buffer to run co mmand and control functions and user interface applications StarterWareFree software enables quick and simple programming of TI embedded processors () user-friendly, production-ready software for Sitara2268222162 32-bit ARM194174 microprocessor (MPU), C60002268222162 digital signal processor (DSP) and DSP ARM developers provides application developers with a flexible starting point that does not require the use of an operating system allows for easy migration to other TI embedded devices A client-side telephony DSP system () Provides 14 eXpressDSP-compliant algorithms on one chip, including data, telephony, and voice algorithms For PSTN-connected products Provides an open DSPBIOS real-time kernel software framework with a complete telephony algorithm library, on-chip memory and peripherals A fixed-point, 16-bit DSP dual-core solution () Code Composer (version 3.0) includes a DSP software simulator for Texas Instruments DSPs, including the C6x () Mimics the actual execution of DSP code without the presence of a DSP chip Code Composer is an IDE that allows designers to edit, build, manage projects, debug and profile from a single application Users can: (1) compile in the background (2) analyze signals graphically (3) perform file IO (4) debug multiple processors and (5) customize the IDE via GEL A DSP family targeted toward appliances, industrial products, consumer products, automotive products, and office products () Up to 40 MIPS of processing power from the processing core Onchip Flash or ROM Dedicated peripherals, such as pulse-width modulation, ultra-fast AD converters, and CAN modules Real-time software technology that simplifies and streamlines the DSP product development process, reducing product development time () Comprised of the TMS320 DSP Algorithm Standard, a single, standard set of coding conventions and application programming interfaces (APIs) for algorithm creators to wrap the algorithm for system-ready use Includes the Code Composer Studio integrat ed development environment (IDE) Includes DSPBIOS, a scalable, real-time kernel and a growing base of TI DSP-based software modules from third parties that can be easily integrated into systems by OEMs Texas Instruments Incorporated is offering developers the industry22683648482s highest performing, scalable and flexible multicore solutions based on its TMS320C66x digital signal processor (DSP) generation. () Fixed - and floating-point capabilities Highly suited for audio infrastructure products as well as vibration and acoustic analyzers Excellent fit for high precision motion control and high channel count real-time process control system An integrated Internet audio chip () Dual Multiply and Accumulate Chip (MAC) on a DSP Embedded Universal Serial Bus (USB) capabilities Supports Secure Digital (SD), Memory Stick, Compact Flash, Smart Media, and Multimedia Card (MMC) TMS320C6472 Multicore DSPSix high speed C64X DSP cores running at 500MHz, 625MHz, 700MHz, and fully backward compatible with other C64X DSP cores () Highest performance DSP from TI with up to 4.2 GHz33600 MMACs and 4.8 MB on-chip L1L2 RAM Offers best power efficiency in the industry with 3GHz performance at 0.15mWMIPS Optimized DSP architecture maximizes subsystem performance on a chip. One of the advantages of this architecture is that in addition to dedicated L1 and L2 memory to each core, the C6472 features 768KB shared L2 programdata memory and a shared memory controller to facilitate high efficient and flexible inter DSP core communications An integrated development environment () Supports C55x and C64x DSPs Includes Visual Code Generation productivity tools, the C6000 Profile Based Compiler, and C5000 Visual Linker Project manager handles thousands of files and supports external make file capabilities to enable working across both PC and Unix Floating-point Digital Signal Processors (DSPs) () Advanced Very Long Instruction Word (VLIW) C67x DSP core L1L2 memory architecture Enhanced Direct Memory Access (EDMA) controller with 16 independent channels A digital still camera chip () TMS320C5000 DSP and ARM7TDMI RISC processor 80 MHz, 32-bit-wide SDRAM interface Programmable CCD controller supports CCDs up to 4M pixels (2K x 2K) Automatically converts ANSI-standard C programs produced by The MathWorks Simulink, DSP Blockset, and Real-Time Workshop algorithm prototyping tools into executable DSP programs () Intuitive block diagram editor models complex systems by selecting the connecting functional elements from the Simulink and DSP Blockset libraries Real-Time Workshop converts Simulink and DSP Blockset block diagram representations into C programs, which are converted into a SPOX program and compiled for the target DSP . A fully programmable DSP-based chip designed specifically for the consumer digital multimedia market () Specifically designed for multimedia applications such as digital video camcorders, PDAs, and other portable imaging and video products Can be used as a stand alone media processor or can seamlessly interface to an external CPU as a slave processor Supports multiple applications and file formats including MPEG4, JPEG, MPEG1, M-JPEG, H.263, mp3, AAC and QuickTime Multi-channel analog interfaces with a user-programmable Spartan-IIE or Virtex-II FPGA, providing developers with the means to implement FPGA-based digital signal processing solutions () Can be used as stand-alone devices with the user-programmable FPGA responsible for supporting all signal processing functionality, or as daughtercards to micro-line DSPFPGA boards A variety of multi-channel ADA configurations are supported: 2-channel 14-bit ADA with ADC sample rates up to 65 MSps 4-channel 16-bit ADA with ADC sample rates up to 2.5 MSps 12-channel ADA with ADC sample rates up to 250 KSps If the capabilities of a Texas Instruments TMS320C6000 DSP processor are required, an ORS-11x board can be fitted as a daughtercard to a TMS320C6000-based micro-line embedded DSPFPGA board ultra-compactThe ultra-compact UC1394a-1 and UC1394a-3 multi-chip modules provide Texas Instruments TMS320C5000 DSP, Spartan-II or Spartan-3 FPGA, and ready-to-use IEEE1394a FireWire communication capabilities in tiny 30 mm x 36 mm surface-mount PLCC packages () They are suitable as user-programmable DSPFPGA resources or as FireWire connectivity devices The UC1394a-1 incorporates a TMS320C5509 integer DSP, a 50 kGate Spartan-II FPGA, 8 MB of SDRAM In addition to the IO capabilities of the UC1394a-3, the UC1394a-1 provides external access to USB and four AD inputs provided by the TMS320C5509 DSP processor C32CPUA DSP resource board with a TMS320C32 DSP processor and SRAM, FLASH ROM, and the micro-line bus interface () Used as a modular co mponent in the micro-line DSP product family, which allows DSP processor, data acquisition, and IEEE 1394 (FireWire) communications modules to be combined and used together for industrial embedded DSP applications 405060 MHz TMS320C32 32-bit Floating Point DSP Processor Up to 2 Mbytes of zero-wait-state RAM or Double Low Power RAM A family of low-cost embedded DSP board configurations () TMS320C6000 DSP processor 400 Mbitsec IEEE 1394 (FireWire) communications Open architecture design with off-the-shelf and OEM data acquisition and IO options The micro-line series of embedded DSPFPGA boards provides embedded systems developers with a tightly integrated suite of programmable DSP, FPGA, and IO resources in small, stand-alone capable board formats () C6713Compact Features: 300 MHz TMS320C6713 floating-point DSP Spartan 6 (LX45, LX75, LX100 or LX150) or Virtex-II (250-kGate 500kGate, or 1MGate) FPGA up to 160 configurable digital IO pins Up to 128 MB SDRAM 8 MB fl ash ROM for DSP and FPGA boot code, as well as non-voltatile parameterdata storage Onboard 400 Mbps IEEE1394a FireWire interface RS-232 interface External access to TMS320C6713 DSP IO interfaces: 32-bit EMIF, XF01 pins, Timer inputoutput pins, McASP and McBSP ports, I2C, and HPI 120 mm x 67 mm footprintISO9001:2000 accredited production and CE certification C6713CPU Features: 300 MHz TMS320C6713 floating-point DSP 400K gate or 1M gate Spartan-3 FPGA up to 96 configurable digital IO pins 64 MB SDRAM 2 MB fl ash ROM for DSP and FPGA boot code, as well as non-voltatile parameterdata storage RS-232 interface External access to TMS320C6713 DSP IO interfaces: 32-bit EMIF, XF01 pins, Timer inputoutput pins, McASP and McBSP ports, I2C, and HPI 98 mm x 67 mm footprint ISO9001:2000 accredited production and CE certification . The micro-line series of embedded DSPFPGA boards provides embedded systems developers with a tightly integrated suite of programmable DSP, FPGA, and IO resources in small, stand-alone capable board formats. () C6412Compact Features: 720 MHz TMS320C6412 integer DSP 1M gate or 4M gate Spartan-3 FPGA up to 211 configurable IO pins Up to 128 MB SDRAM Up to 32 MB fl ash ROM for DSP and FPGA boot code, as well as non-voltatile parameterdata storage Two independent IEEE1394a FireWire interfaces for streaming data inout simultaneously 10100BASE-Tx Ethernet interface USB 2.0 and RS-232 interfaces External access to DSP Processor IO interfaces: 64-bit EMIF, XF01 pins, Timer inputoutput pins, McBSP ports, I2C, and 16-32-bit HPI 120 mm x 72 mm footprint ISO9001:2000 accredited production and CE certification C641xCPU Features: 400 MHz TMS320C6410, 500MHz TMS320C6413 or 500 MHz TMS320C6418 integer DSP 500K gate, 1.2M gate, or 1.6M gate density Xilinx Spartan8482-3E FPGA: up to 98 configurable digital IO pins Up to 64 MB SDRAM 8 MB fl ash ROM for DSP and FPGA boot code, as well as non-voltatile parameterdata storage RS-232 interface External access to DSP Procesor IO interfaces: 32-bit EMIF, XF01 pins, Timer inputoutput pins, McASP and McBSP ports, I2C, and HPI 98 mm x 67 mm footprint ISO9001:2000 accredited production and CE certification . XpressDSP-compliant TCPIP protocol stack with integrated DMA support () Easy-to-use software package that enables Ethernet and Internet communications on a wide variety of TI DSP hardware platforms: Commercial off-the-shelf hardware (micro-line embedded DSP boards) Texas Instruments development starter kits custom-designed hardware incorporating TI DSPs High communication efficiency and throughput Graphical development tools compliant with applicable Internet standards micro-line C671xProvides embedded systems developers with a tightly integrated suite of programmable DSP, FPGA, and IO resources in small, stand-alone capable board formats () Target high-performance floating-point DSP applications, using the powerful Texas Instruments TMS320C6713 DSP Incorporates up to 64 MB SDRAM, 8 MB boot program flash ROM, and an onboard, high-density 250 kGate, 500 kGate, or 1 MGate Virtex-II FPGA (optionally programmable) The FPGA greatly expands processing as well as hardware interfacing possibil ities A DSP board with onboard FPGA () Texas Instruments TMS320C6713 floating-point DSP processor at 225 MHz (up to 1800 MIPS or 1350 MFLOPS) Virtex-II FPGA (250k, 500k, or 1M gates) Dual 400 Mbitssec IEEE 1394 FireWire ports C6x11CPUA DSP resource board that combines either a fixed point TMS320C6211 or a floating point TMS320C6711 DSP Processor with SBSRAM, SDRAM, FLASH ROM, and the micro-line bus interface () Operating with the 32-bit fixed-point or floating-point TMS320C6211-150167 MHz or TMS320C6711-100150 MHz Micro-line bus, pin-compatible with the entire micro-line family Maximum performance of 1336 MIPS (C6211) or 900 MFLOPS (C6711) High-quality, single-board solution for applications requiring an embedded DSP and optionally programmable FPGA () Texas Instruments TMS320C6713 DSP 64 MB of SDRAM (128 MB SDRAM available on request), 2 MB flash ROM Optionally programmable Spartan-3 FPGA (up to 1 M gate density) Embedded DSP board () Texas Instruments TMS320C6211 or TMS320C6711 DSP U p to 2 MB of SDRAM or up to 64 MB of SDRAM Up to 512 KB flash EPROM, McBSP, and RS-232 micro-line C6x11CPUTexas Instruments TMS320C6211 or TMS320C6711 DSP () Up to 2 MB of SBRAM or up to 64 MB of SDRAM Up to 512 KB Flash EPROM, McBSP, and RS-232 Optional FireWire, Ethernet, analog and digital IO Micro-line C6713CompactStandalone and embedded-capable DSPFPGA board () Texas Instruments TMS320C6713 floating point DSP Processor 250k, 500, or 1M-gate complexity Virtex-II FPGA 400 MBps IEEE 1394 FireWire interface Standalone and embeddable DSPFPGA board () Texas Instruments TMS320C6713 floating point DSP 250 k, 500 k, or 1 M-gate complexity Virtex-II FPGA 400 Mbps IEEE 1394a FireWire interface A PCI-based FFT processor mezzanine that provides a complete development and processing platform for FFT-based DSP algorithms using DSP Architectures DSP-24 10,000 MIPS Vector DSP () An FFT processing module that provides high performance real-time FFT-based DSP algorithms () VectorWare is a software d evelopment tool for Vector-DSP-based boards () Provides all the tools to develop, simulatedebug, and deploy vector-DSP application code VectorBuilder is an optimizing compiler that generates vector microcode for the VT-5000 family of vector-DSP-based products Accepts a high-level vector instruction language known as VectorCode The VT-1420 product family consists of four products, VT-1420, VT-1423, VT-1425 and VT-1426 () The VT-1420 and VT-1426 are dual processor PMC modules and the VT-1423 and VT-1425 are single processor PMC modules All modules are targeted for DSP applications and are available with TMS320C6415 processors or TMS320C6416 processors These modules are compatible with any carrier board with a PMC compliant module site A 20,000 MIPS vector processing board that performs a 1K pt complex FFT in 21 181sec () The board is based on the 24-bit DSP-24 chip from DSP Architectures Designed for high-end market where FFT performance and data IO are important . A set of DSP PMC modules () VT-1420 dual and VT-1423 single TMS320C641516 DSP One or two TMS320C6415 or TMS320C6416 processors each with: clock speeds of up to 720 MHz 0, 16, 32, or 64 Mbytes of SDRAM 0, 1, or 2 Mbytes of FLASH Utopia level II interface on P14 An embedded VoIP gateway bridging legacy VME communications equipment to voicedata packet networks () 6U, single-slot, single-blade VMEbus configuration Offers modular feature expansion, scaling from a base T1E1J1 network interface board to a complete VoIP Media Gateway by adding DSP processor and protocol modules A DSP developers kit () Supports driver development for operating systems that are not directly supported by Voiceboard Includes source code for McBSP and API drivers, DSP software load utilities, API for remote IP or CompactPCI and VME based messaging and payload data transfer, example and test code, user manual, How to Write a MediaPro Device Driver manual, and up to 20 hours of telephone access to Device Driver techn ical support group . PTMC41PTMC41, a 240-port PTMC 2.15 DSP resource board, supported by Voiceboards broad range of off-the-shelf communications and VoIP media gateway software () DSP software libraries available for the PTMC41 include VoIP, conferencing (64 to 1,024 party), telephony functions, FAX, modems, vocoders, and RecordPlay resources For those customers desiring to integrate their own code onto the PTMC41 DSPs, Voiceboard offers a DSP Software Development Kit (SDK) including commonly needed telephony functions Will work with CPU, carrier board, or custom board that supports industry standard PICMG 2.15 PTMC specifications MediaPro resource software modules () MediaPro DSP software is downloaded into the memory of MediaPro DSP hardware Provides high-performance multi-port embedded modems and FAX servers . A high-density VME64 DSP resource board () SCSA TDM access Real-time multiprocessing of communications media datastreams Detection and generation of communications signaling tones PTMC41DSP PMC Mezzanine BoardA PTMC DSP resource board () Provides media conversion on 240 ports Flexible access to the H.110 backplane TDM bus and the carrier boards local PCI bus Real-time multiprocessing of communications media datastreams The SuperSpan VS32 is a VME 64 bus interface, software selectable T1E1J1 digital telephony network controller on a 6U board () A dual software selectable T1E1J1 span configurations, dual 100baseT connections, hot swappable, dual PTMC sites for optional DSP PMC and additional PowerPC 500 MIPS processor. The VS32 high-density dual span provides 60-port channel capacity Capabilities include play, record, call signaling tones, fax, V.22 and V.90 modem, conferencing, and VoIP packet voice through DSP PMC option SCSA backplane provides low latency switching of TDM data A DSP resource board with SCSA-bus-accessable DSP resources () Available with 24 C52 or 20 C549 fixed-point DSPs 128-Kbyte 15nsec SRAM per processor 16 Mbytes of shared DSP cache memory common to all DSPs A 240-port 6300 MIPS, DSP PMC board () Provides a full 240-port capacity for VoIP, telephony functions, T.38 Fax, V.22, V.90 modem, conferencing, or VoATM applications, including G.711 or G.723.1, G.729A, G.726 compression algorithms and G.168 long tail echo cancellation Compliant with PICMG 2.15 PTMC specifications, including access to the carrier board PCI and H.110 TDM buses 350-MIPS PowerPC 8240 executive controller supporting resource management, messaging, data buffers, TCP-UDPIP stacks, and dual redundant 100Base-T E thernet ports The SuperSpan VS34 is a VME 64 bus interface, software selectable T1E1J1 digital telephony network controller on a 6U board () A Quad software selectable T1E1J1 span configurations, dual 100baseT connections, hot swappable, dual PTMC sites for optional DSP PMC and additional PowerPC 500 MIPS processor. The VS34 high-density dual span provides 120-port channel capacity Capabilities include play, record, call signaling tones, fax, V.22 and V.90 modem, conferencing, and VoIP packet voice through DSP PMC option SCSA backplane provides low latency switching of TDM data Conference software C5441 DSP () Getting all the processing performance, memory and high-speed IO is a never ending quest for applications heavy in digital signal processing () Integrating the flexibility of programmable logic makes building a processor even more challenging The Xilinx Virtex-5 SXT platform establishes an industry record for DSP performance delivering 352 GMACs at 550MHz, while consuming 35 percent less dynamic power as compared to previous 90nm generation devices, and is the first DSP-optimized FPGA family to integrate serial transceivers The Virtex-5 SXT platform delivers the highest ratio of DSP blocks-to-logic needed for high-performance digital signal processing applications in wireless, such as WIMAX and high-definition video, such as surveillance and broadcast Avnet Virtex-6 FPGA DSP KitWireless, aerospace and defense, instrumentation and medical imaging applications continue to drive demanding performance requirements for todays sophisticated electronic systems () Due to their inherent hardware structure advantages, Xilinx FPGAs outstrip the high-end computing power of traditional digital signal processors Based on the performance leading Virtex-6 FPGAs, this DSP Kit bundles pre-validated software tools, IP and hardware into a platform that addresses even the most challenging applications With the addition of targeted reference designs, the Virtex-6 FPGA DSP kit enables users to focus on creating their own unique differentiation from the very beginning of the product development process, accelerating development for experienced users while also simplifying the adoption of FPGAs for new users Xilinx ISE Design Suite 11Logic, system, embedded and DSP domain-specific solutions () Pl anAhead8482 Design Analysis tool for optimizing performance ChipScope8482 Pro Analyzer and Serial IO Toolkit for real-time debug and verification System Generator for DSP for developing high-performance DSP systems using MathWorks products Avnet Spartan-6 FPGA DSP KitXilinx FPGAs exceed the computing power of DSPs with their inherent parallelism and offer co-processing methods of performance acceleration for signal processing () The Xilinx Spartan-6 FPGA DSP Kit integrates hardware, IP, software development tools and methodologies together into solutions that accelerate development for experienced users and simplify the adoption of FPGAs for new users With the addition of targeted reference designs, these DSP platforms enable users to focus on creating their own unique differentiation from the very beginning of the product development process This kit includes the Xilinx Spartan-6 LX150T board and allows users to quickly learn the different tool flows and design techniques involved in creating DSP centric designs with the Spartan-6 FPGA family Virtex-6 FPGA DSP KitProvides a platform for next generation products that include digital signal processing (DSP) which need to deliver more performance and flexibility with shorter development cycles and less cost and power () Out-of-the-box development solution that quickly builds confidence in developing DSP applications on FPGAs Includes a Xilinx ML605 development board including a Virtex-6 LX240T FPGA, design tools, IP, reference designs, and documentation Supports both traditional RTL and high-level design methodologies and can easily extended to include additional high-level design flows and IO daughter cards through third party partners and standardized integration . An ideal hardware platform to evaluate Xilinx FPGA in a wide range of video and imaging applications () Fully integrated and supported by the Xilinx System Generator for DSP software Utilizes high speed Ethernet hardware cosimulation capability and enables system integration, development, and verification of codecs, IP, and video algorithms in real time Comprised of a limited edition of the System Generator for DSP, Integrated Software Environment (ISE) FPGA design tool, Xilinx ML402-SX35 development board, video IO daughter card (VIODC), CMOS image sensor camera, power supply, cables, and detailed user guide and reference designs ISE Design Suite 12 software unlocks greater design productivity with breakthrough technologies for power optimization and cost () The Design Suite enables the fastest time to design completion with Xilinx Targeted Design Platforms 8211 available in four configurations aligned to user-preferred methodology logic, embedded, DSP, or system design Xilinx Targete d Design Platforms provide embedded, DSP, and hardware designers with access to an array of devices supported by open standards, common design flows, IP, and runtime platforms The ISE Design Suite offers domain-specific design environments and enables designers to meet power and performance goals with Xilinx CPLDs and FPGAs, including the new Virtex-6 and Spartan-6 families Spartan-3A DSPA DSP platform family () Xilinx XtremeDSP slice can be interconnected in creative ways on-chip Highest-performing family member provides 2,200 Gbps memory bandwidth Chips DSP48A slices can realize wide math functions, DSP filters, and complex arithmetic 8211 all at reduced power XtremeDSP DevicesThe Xilinx XtremeDSP initiative helps you develop tailored high performance DSP solutions for aerospace and defense, digital communications, multimedia, video, and imaging industries. () High-performance configurable FPGAs for DSP designs Development boards and Intellectual Property (IP) System Generator and AccelDSP design and development tools XtremeDSP SolutionStart designing using Simulink, MATLAB, or VHDL () HDLbitstream using System Generator for DSP tool Fast, parameterizable FFTs, filters, and FEC cores Free DSP software and IP core evaluations The Kintex8482-7 FPGA DSP Kit includes development boards, IO daughter cards, design tools, and reference designs, and gives designers the industry8217s largest portfolio of DSP, video, and floating-point IP blocks. () Hardware and documentation: KC705 base board with the Kintex-7 XC7K325T-FF900-2 FPGA 4DSP FMC150 high-speed ADCDAC FMC module USB, Ethernet, and MMCX RF coax cables universal power supply Downloadable schematics, BOM, and design files Documentation, including Getting Started Guide Software and IP: Full-seat ISE174 Design Suite Logic Edition, device-locked for the XC7K325T-FF900-2 FPGA CoreGen IP MathWorks174 evaluation software (MATLAB and Simulink) Targeted reference designs and tutorials Getting Started Reference Design High-performance DSP reference design . One integrated front-to-back FPGA IP catalog and design tool suite with unified interoperability () Domain specific design capture for DSP, embedded and logical design Accelerated system development via customization and integrated libraries of optimized IP Design tools optimized to minimize area while maximizing performance for Virtex-5 and Spartan-3 family Platform FPGAs Virtex-4 FPGAs for highest performance DSP () Up to 512, 500 MHz XtremeDSP Slices (18 x 18 multiply, 48-bit add) Virtex-4 for lowest power per channel 8211 each XtremeDSP Slice consumes only 2.3 mW per 100 MHz XtremeDSP Development ToolsModel and design your system using MATLAB, Simulink, and blocksets from The MathWorks () Use the Xilinx bit and cycle accurate library for designing algorithms for the FPGA Import MATLAB algorithms like linear algebra and matrix inversion and multiplication Automatically generate HDL or a bitstream at the push of a button with no loss in performance over designs written in HDL Power s upply 100-240 V, 5060 Hz with universal plug adaptors USB Platform download cable for configuration and debug System Generator for DSP design softwareSSP to DSP Cookie Syncing Explained The matching process of the SSP cookie ID to the DSP cookie ID happens through a parallel process to serving ads called cookie syncing. A cookie sync is necessary because as a standard security process, web servers of any kind can only request cookies that are set to their own domain. Since the SSP sits between the end-user and all the DSP bidders in a real-time auction however, the DSP needs a way to identify the users it is looking for. Why Cookie Syncing is Necessary So lets take a simple example on a store trying to retarget their users. Lets say that you run storeABC, and user123 drops in and adds a pair of 150 shoes to their shopping cart, but never makes it to the checkout. You want to retarget that user and serve them an ad directing them back to your store to try and close the sale. Since you work with DSP456, you have a 11 pixel sitting on your shopping cart page, which forces the user to call out to DSP456s web server as they load the shopping cart page, giving DSP456 a chance to drop a cookie on user123. That cookie ID is DSPcookie789. Now, user123 is surfing around the web, and lands on awesomesite, which is using SSP123 to monetize their ad inventory. awesomesite serves a 3rd party redirect to SSP123, which drops a cookie on user123. That cookie ID is SSPcookieXYZ. SSP123 now requests a bid from DSP456 among other bidders for the impression that SSPcookieXYZ is about to view. But wait, how does DSP456 know that SSPcookieXYZ DSPcookie789 On this first ad, it doesnt, so your DSP doesnt bid on the impression. Bummer. Remember, the SSP can only read and pass its own cookie ID to bidders. Piggyback Scripts Power Cookie Syncs After SSP123 selects a winning bidder though, it runs one last piece of javascript that forces user123 to call out to a handful of regular bidders, including DSP456. In that redirect, using a query string, the SSP passes its cookie ID on user123 (SSPcookieXYZ). Now the user IS calling DSP456s web server and the DSP can request its own cookie from user123 in a process the industry refers to as piggybacking. Eureka SSPcookieXYZ also has DSPcookie789 8211 it8217s user123 The DSP knows the SSPs cookie ID because of the query string in the piggyback call, and it can read its own cookie ID because that user called its web server as the end destination with the piggyback call. DSP456 now writes into its database that DSPcookie789 SSPcookieXYZ for bid requests from SSP123. The next time user123 hits a page that SSP123 is helping to monetize, DSP456 will know it is the same user that abandoned their shopping cart and can bid appropriately. The process repeats for sites using other SSPs. It sounds complex, but all it means is that for every ad served through RTB, about 10x as many technology companies are involved in the cookie-sync process. The reason the syncing process occurs after the auction happens and not before it is because of latency and user experience. If user123 had to call 10 DSPs, wait for those DSPs to cookie their machine, write the matching SSP id into their database, and then bid, it would dramatically slow down the entire auction process for everyone. If the cookie sync fails on the other hand, well there will be many more opportunities for that. Cookie Syncing Step-by-Step Below is a simplified diagram of the cookie sync process, where user123 visits the Marketer8217s website first (1), is then redirected to the Marketer8217s DSP (2), calls the Marketer8217s DSP (3), receives the DSP8217s cookie (4) and is simultaneously redirected to various SSPs that the DSP is cookie syncing with (5). When the user calls those SSPs, the call passes DSP4568217s cookie ID on that user in a key value parameter. The process completes when the DSP4568217s ID is logged in the match table for each SSP, and receives the SSP8217s cookie in return. As an interesting post-script to this, the SSP might redirect the user back to DSP if the DSP is hosting the match table instead of the SSP. This would be the same process as 4 5, just in the reverse order, with the SSP passing its ID to the DSP so the DSP can log both IDs in its own match table. Who hosts the match table is a commercial arrangement that DSPs and SSPs Exchanges make with each other, with the match table host typically paid to shoulder the cost of maintaining the database. Example Cookie Sync Scripts If you are interested, here are the URLs that run the piggyback script for each major SSP 8211 these pages look blank, so you8217ll have to 8216view source8217 to see the code. Pubmatic: ads. pubmaticAdServerjssyncuppixels. html It looks as though 8216vcode8217 is the item passing the cookie ID. Rubicon Project: tap2-cdn. rubiconprojectpartnerscriptsrubiconemily. html It looks as though 8216nid8217 is the item passing the cookie ID. Post navigation Great article Ben. I8217m interested in knowing a couple of things: Firstly, could you answer Clive Page8217s question, which i have reprinted below 8221 Clive Page September 11, 2012 at 4:48 am Hi Ben, What other information can be passed via an SSP ID to the DSP to add value in the bidding process. From your description, the cookie syncing only supports a binary decision from the DSP as to whether or not there is a DSP cookie on the users machine yes or no. It is commonly referenced within the industry that publishers have a wealth of data points on their users, and the onus should be on the publishers to expose this data with a view to better monetizing their sites. With the above definition, all of the information used as the basis for the bidding decision is on the advertiser side through the retargeting pixel. Is there any other information that can be passed via the SSP cookie which would give the bidders greater insight into the user and their behaviour, so for example the segment IDs (and segment definitions) to which the user belongs as classified by the publisher or the SSP.8221 Secondly, I want to know that if I am a publisher, what technology do i need to have on my website to be part track all the information that i can give to an SSP. Do i just need to have a pixel or drop a cookie on every user that visits my website or do i have to allow the SSP to drop it8217s cookies on the users that visit my website Also, is there any information i can withold or would the SSP have access to all the information on my website once they place their trackers Finally, is there any way I can also get access to the SSP8217s cookie pool, if I want to advertise to new users that have been to other relevantcompeting websites Not sure how I missed that one 8211 in terms of passing data to the DSP, there8217s lots of ways to do that, but it8217s a separate process from cookie syncing. Rather, you8217d do this in the bid request. I8217d recommend you take a look at sections 3.2.15 thru 3.2.17 of the OpenRTB 2.4 spec here: iabwp-contentuploads201601OpenRTB-API-Specification-Version-2-4-DRAFT. pdf There are dedicated and predefined keyvalues for age and gender, as well as a generic keyvalue parameter the publisher could use to pass whatever information it wanted. This also allows for segment data to be passed. That said, in practice I would say these keys are rarely ever used for a few reasons. First, advertisers don8217t need publisher to pass them 3rd party data sets, as the advertiser can integrate with those themselves, and for likely a better rate since they are a buyer. Secondly, if a publisher has valuable 1st party data they want to make available to buyers, they8217ll typically do that through setting up a deal ID, which will stand in place for perhaps a host of data elements. By using a deal ID, it allows the publisher to more easily control the commercial terms of using that data, and to clearly explain what the data means, where it comes from, and so forth which the buyer might not understand if it was simply present in the request. This is covered in section 3.2.20. To your second question, you may need to pass additional information to the SSP if you want to add data to your bid requests. Certainly you8217d need the SSP8217s tag on page, but you might also need some JavaScript to pick up your content section ID for example, or pass user information. Then, you8217d typically setup a deal ID in your SSP8217s UI based on the data you8217re passing over to it. There8217s no other special technology you need per se, though if you wanted to pass user data it could benefit you to have a data management platform. Your SSP would only have access to the information you choose to pass it, though you would want to pay attention to your transparency settings on how you are represented to buyers on the exchange. What I mean is, if your site URLs are always structured as harryswebsitecontentsectionID, then if you pass the full ID it might not be very difficult for a buyer to target just one content section vs. another, and that will work against you if you are trying to create separate and premium deals for each content section. To your third question, typically no 8211 you might be able to use a DSP for this purpose. You8217d have to buy media on those competitor sites first, then you could retarget them on other sites. This could be difficult though if your competitors are blocking you, which they are likely to do. The SSP DSP wouldn8217t maintain data segments that were so specific as 8220user went to X domain8221 that I would imagine they8217d make available to you. Hope that helps 8211 Ben Firstly, great article and thanks for all the speedy and detailed responses. I have a couple of basic questions about cookies and cookie syncing 1) As an advertiser, can I use my 1st party cookie to tracking browsing behavior of my website visitors outside my website If yes, can I use this to create rich user profiles and then send them more targeted messages on owned media If not, how can 3rd party cookies track such browsing 2) How do 3rd party data providers such as Eyota or Lotame cookie sync with Ad exchanges DSP8217s Is there some piggybacking at the end of the script they use to drop a cookie to the user8217s browsers via major publishers Thanks 8211 will try to help. 1. Yes, assuming you buy media on those other websites. That is, your 1st party cookie is set on the user8217s device, and because it can only be read by your server, you need that user to make a request to your server from those other websites. The easiest way to practically do that is to run a retargeting media campaign against those users, serve them an ad, and force them to call your website in the process through a tracking pixel. You can then use this information to further segment 038 target users. 3rd party cookies essentially track users for 8220free8221 because someone else is paying for the media, or they are part of the transaction process. 2. Yes, they compel users to execute a cookie sync with exchanges DSPs as part of their core JavaScript, commonly called a piggyback script. The DSPs Exchanges could also kick off the cookie syncing process on their end through the same process. Hope that helps 8211 Leave a Reply Cancel replySSP to DSP Cookie Syncing Explained The matching process of the SSP cookie ID to the DSP cookie ID happens through a parallel process to serving ads called cookie syncing. A cookie sync is necessary because as a standard security process, web servers of any kind can only request cookies that are set to their own domain. Since the SSP sits between the end-user and all the DSP bidders in a real-time auction however, the DSP needs a way to identify the users it is looking for. Why Cookie Syncing is Necessary So lets take a simple example on a store trying to retarget their users. Lets say that you run storeABC, and user123 drops in and adds a pair of 150 shoes to their shopping cart, but never makes it to the checkout. You want to retarget that user and serve them an ad directing them back to your store to try and close the sale. Since you work with DSP456, you have a 11 pixel sitting on your shopping cart page, which forces the user to call out to DSP456s web server as they load the shopping cart page, giving DSP456 a chance to drop a cookie on user123. That cookie ID is DSPcookie789. Now, user123 is surfing around the web, and lands on awesomesite, which is using SSP123 to monetize their ad inventory. awesomesite serves a 3rd party redirect to SSP123, which drops a cookie on user123. That cookie ID is SSPcookieXYZ. SSP123 now requests a bid from DSP456 among other bidders for the impression that SSPcookieXYZ is about to view. But wait, how does DSP456 know that SSPcookieXYZ DSPcookie789 On this first ad, it doesnt, so your DSP doesnt bid on the impression. Bummer. Remember, the SSP can only read and pass its own cookie ID to bidders. Piggyback Scripts Power Cookie Syncs After SSP123 selects a winning bidder though, it runs one last piece of javascript that forces user123 to call out to a handful of regular bidders, including DSP456. In that redirect, using a query string, the SSP passes its cookie ID on user123 (SSPcookieXYZ). Now the user IS calling DSP456s web server and the DSP can request its own cookie from user123 in a process the industry refers to as piggybacking. Eureka SSPcookieXYZ also has DSPcookie789 8211 it8217s user123 The DSP knows the SSPs cookie ID because of the query string in the piggyback call, and it can read its own cookie ID because that user called its web server as the end destination with the piggyback call. DSP456 now writes into its database that DSPcookie789 SSPcookieXYZ for bid requests from SSP123. The next time user123 hits a page that SSP123 is helping to monetize, DSP456 will know it is the same user that abandoned their shopping cart and can bid appropriately. The process repeats for sites using other SSPs. It sounds complex, but all it means is that for every ad served through RTB, about 10x as many technology companies are involved in the cookie-sync process. The reason the syncing process occurs after the auction happens and not before it is because of latency and user experience. If user123 had to call 10 DSPs, wait for those DSPs to cookie their machine, write the matching SSP id into their database, and then bid, it would dramatically slow down the entire auction process for everyone. If the cookie sync fails on the other hand, well there will be many more opportunities for that. Cookie Syncing Step-by-Step Below is a simplified diagram of the cookie sync process, where user123 visits the Marketer8217s website first (1), is then redirected to the Marketer8217s DSP (2), calls the Marketer8217s DSP (3), receives the DSP8217s cookie (4) and is simultaneously redirected to various SSPs that the DSP is cookie syncing with (5). When the user calls those SSPs, the call passes DSP4568217s cookie ID on that user in a key value parameter. The process completes when the DSP4568217s ID is logged in the match table for each SSP, and receives the SSP8217s cookie in return. As an interesting post-script to this, the SSP might redirect the user back to DSP if the DSP is hosting the match table instead of the SSP. This would be the same process as 4 5, just in the reverse order, with the SSP passing its ID to the DSP so the DSP can log both IDs in its own match table. Who hosts the match table is a commercial arrangement that DSPs and SSPs Exchanges make with each other, with the match table host typically paid to shoulder the cost of maintaining the database. Example Cookie Sync Scripts If you are interested, here are the URLs that run the piggyback script for each major SSP 8211 these pages look blank, so you8217ll have to 8216view source8217 to see the code. Pubmatic: ads. pubmaticAdServerjssyncuppixels. html It looks as though 8216vcode8217 is the item passing the cookie ID. Rubicon Project: tap2-cdn. rubiconprojectpartnerscriptsrubiconemily. html It looks as though 8216nid8217 is the item passing the cookie ID. Post navigation Great article Ben. I8217m interested in knowing a couple of things: Firstly, could you answer Clive Page8217s question, which i have reprinted below 8221 Clive Page September 11, 2012 at 4:48 am Hi Ben, What other information can be passed via an SSP ID to the DSP to add value in the bidding process. From your description, the cookie syncing only supports a binary decision from the DSP as to whether or not there is a DSP cookie on the users machine yes or no. It is commonly referenced within the industry that publishers have a wealth of data points on their users, and the onus should be on the publishers to expose this data with a view to better monetizing their sites. With the above definition, all of the information used as the basis for the bidding decision is on the advertiser side through the retargeting pixel. Is there any other information that can be passed via the SSP cookie which would give the bidders greater insight into the user and their behaviour, so for example the segment IDs (and segment definitions) to which the user belongs as classified by the publisher or the SSP.8221 Secondly, I want to know that if I am a publisher, what technology do i need to have on my website to be part track all the information that i can give to an SSP. Do i just need to have a pixel or drop a cookie on every user that visits my website or do i have to allow the SSP to drop it8217s cookies on the users that visit my website Also, is there any information i can withold or would the SSP have access to all the information on my website once they place their trackers Finally, is there any way I can also get access to the SSP8217s cookie pool, if I want to advertise to new users that have been to other relevantcompeting websites Not sure how I missed that one 8211 in terms of passing data to the DSP, there8217s lots of ways to do that, but it8217s a separate process from cookie syncing. Rather, you8217d do this in the bid request. I8217d recommend you take a look at sections 3.2.15 thru 3.2.17 of the OpenRTB 2.4 spec here: iabwp-contentuploads201601OpenRTB-API-Specification-Version-2-4-DRAFT. pdf There are dedicated and predefined keyvalues for age and gender, as well as a generic keyvalue parameter the publisher could use to pass whatever information it wanted. This also allows for segment data to be passed. That said, in practice I would say these keys are rarely ever used for a few reasons. First, advertisers don8217t need publisher to pass them 3rd party data sets, as the advertiser can integrate with those themselves, and for likely a better rate since they are a buyer. Secondly, if a publisher has valuable 1st party data they want to make available to buyers, they8217ll typically do that through setting up a deal ID, which will stand in place for perhaps a host of data elements. By using a deal ID, it allows the publisher to more easily control the commercial terms of using that data, and to clearly explain what the data means, where it comes from, and so forth which the buyer might not understand if it was simply present in the request. This is covered in section 3.2.20. To your second question, you may need to pass additional information to the SSP if you want to add data to your bid requests. Certainly you8217d need the SSP8217s tag on page, but you might also need some JavaScript to pick up your content section ID for example, or pass user information. Then, you8217d typically setup a deal ID in your SSP8217s UI based on the data you8217re passing over to it. There8217s no other special technology you need per se, though if you wanted to pass user data it could benefit you to have a data management platform. Your SSP would only have access to the information you choose to pass it, though you would want to pay attention to your transparency settings on how you are represented to buyers on the exchange. What I mean is, if your site URLs are always structured as harryswebsitecontentsectionID, then if you pass the full ID it might not be very difficult for a buyer to target just one content section vs. another, and that will work against you if you are trying to create separate and premium deals for each content section. To your third question, typically no 8211 you might be able to use a DSP for this purpose. You8217d have to buy media on those competitor sites first, then you could retarget them on other sites. This could be difficult though if your competitors are blocking you, which they are likely to do. The SSP DSP wouldn8217t maintain data segments that were so specific as 8220user went to X domain8221 that I would imagine they8217d make available to you. Hope that helps 8211 Ben Firstly, great article and thanks for all the speedy and detailed responses. I have a couple of basic questions about cookies and cookie syncing 1) As an advertiser, can I use my 1st party cookie to tracking browsing behavior of my website visitors outside my website If yes, can I use this to create rich user profiles and then send them more targeted messages on owned media If not, how can 3rd party cookies track such browsing 2) How do 3rd party data providers such as Eyota or Lotame cookie sync with Ad exchanges DSP8217s Is there some piggybacking at the end of the script they use to drop a cookie to the user8217s browsers via major publishers Thanks 8211 will try to help. 1. Yes, assuming you buy media on those other websites. That is, your 1st party cookie is set on the user8217s device, and because it can only be read by your server, you need that user to make a request to your server from those other websites. The easiest way to practically do that is to run a retargeting media campaign against those users, serve them an ad, and force them to call your website in the process through a tracking pixel. You can then use this information to further segment 038 target users. 3rd party cookies essentially track users for 8220free8221 because someone else is paying for the media, or they are part of the transaction process. 2. Yes, they compel users to execute a cookie sync with exchanges DSPs as part of their core JavaScript, commonly called a piggyback script. The DSPs Exchanges could also kick off the cookie syncing process on their end through the same process. Hope that helps 8211 Leave a Reply Cancel reply

No comments:

Post a Comment